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Abstract Four-dimensional quantitative structure-activity re-
lationship (4D-QSAR) analysis was applied to a series of 52
benzothiophene analogs synthesized by Hiroshi Yamashita
et al. (2011, United Sates Patent no. US8,349,840) and eval-
uated as dopamine D2 receptor inhibitors. The QSAR equa-
tions, generated by a combined scheme of genetic algorithms
(GA) and partial least squares (PLS) regression, were evalu-
ated by leave-one-out cross-validation, using a training and
test set of 42 and ten compounds, respectively. Four different
alignments were tested, and model 2, generated from Eq. 10,
showed the best statistical results; it was therefore chosen to
represent the data set. This study allowed a quantitative pre-
diction of compounds potency and supported the design of the
new benzothiophene.
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Introduction

Dopamine is an important neurotransmitter present in the
brain. In fact, it plays a crucial role as a regulator of many
physiological functions in the central nervous systems, as well
as in the periphery, as a modulator of cardiovascular and renal
functions, among others [1]. It is well-known that dopamine
receptors are a class of G protein-coupled receptors. The D1
and D5 receptors are coupled to the Gs alpha and cause the
conversion of adenosine triphosphate to cyclic adenosine
monophosphate (cAMP). In contrast, the D2, D3, and D4

receptors couple to Gi alpha and inhibit adenylyl cyclase, so
that the concentration of cAMP is reduced [2]. All of these
receptor subtypes have been identified in specific regions of
the central nervous system, where they play critical roles in the
regulation of cognitive function and motor control [3, 4].
Therefore, the D2 receptor, also known as D2R, is of great
interest since it is the main pharmacological target of the
typical, or classic, antipsychotics (such as haloperidol, chlor-
promazine, and fluphenazine). Those drugs are effective in the
treatment of positive symptoms of schizophrenia (mental dis-
order) by blocking dopamine D2 receptors in the mesolimbic
area [5]. Since the discovery of dopamine and its receptors,
several research works have been conducted to aggregate
knowledge about the functionality of dopamine receptors
and the search for new drugs for the treatment of psycholog-
ical disorders such as Schizophrenia and others [3, 4].

Recently, Yamashita et al. reported a series of
benzothiophene analogs useful for inhibiting dopamine D2
receptors [6]. In fact, the benzothiophene analogs bind non-
selectively to both D2 and D3 dopamine receptors. Molecular
mechanics based methods involving docking calculations and
also QSAR studies are suitable tools to adjust ligands at target
sites and to estimate interaction energy (affinity) and associate
the chemical structure to the biological activity [7].
Nowadays, it is a well-established technique applied to nu-
merous cases [8, 9]. Among the molecular modeling tech-
niques, QSAR studies are known to be a method used in order
to connect the chemical structure and physicochemical prop-
erties to the biological activity of compounds. This method
has its greatest use in medicinal chemistry, which helps ex-
plain the forces involved in the action of drugs and considers
whether their biological properties are the desired. Recently, a
promising computational approach for the direct study of drug
features most closely associated with particular biological
properties at a given receptor is four-dimensional quantitative
structure-activity relationship (4D-QSAR) [10–13]. In this
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approach, the affinity correlates with the three-dimensional
structure and multiple representations of ligand conformation/
orientation [14]. Data sets for 4D-QSAR include all possible
conformations, orientations and, in some cases, protonation
states [14]. In fact, methods that can incorporate molec-
ular flexibility proved advantageous, since they allowed
the identification of the conformation that maximized
the activity from 3D-QSAR models [12]. In the current
study, four-dimensional quantitative structure-activity re-
lationship (4D-QSAR) [10–14] models were developed
for this series of benzothiophene analogs, in order to
identify characteristics that may enhance the potency of
these compounds.

Methods

Biological data

The 4D-QSAR [10–14] models were developed using 42
compounds (Table 1), the training set, and externally validated
using ten compounds (Table 1), the test set, randomly selected
from a series of benzothiophene analogs useful for inhibiting
dopamine D2 receptors, developed by Yamashita et al. [6].
The Ki (nM) values were converted into molar units, and then
expressed in negative logarithmic units (pKi). In addition, all
pharmacological data were obtained from the same laboratory,
eliminating the potential noise that might have been intro-
duced by the pooling of data sets from different sources.

The three-dimensional (3D) structures of the 52 analogues
(Table 1) were constructed using theHyperChem 7.0 software
[15]. Each structure was geometry-optimized in vacuum,
without any restriction, using the MM + molecular mechanics
force field, and subsequently using the semi-empirical AM1
Hamiltonian, in order to assign the partial atomic charges [13].

Molecular dynamic simulation

The details of the RI-4D-QSAR (receptor independent 4D-
QSAR) formalism has been reported by Hopfinger et al. [16].
Molecular dynamics simulation (MDS) was carried out using
the MOLSIM 3.0 package [17] in the 4D-QSAR program
with an extended MM2 force field [18]. The temperature for
the MDS was set at 300 K, close to the temperature assays,
with a simulation sampling time of 100 ps, and intervals of
0.001 ps. Appling this scheme, a total sampling of
10,000 conformations of each compound was obtained.
MDS calculations were carried out applying a distance-
dependent dielectric function, ɛr = D*rij, which was set
to 3*rij in order to try to model the solvent effect in the
absence of explicit solvent.

Alignment definition

In this study, it is assumed that all molecules bind to the
receptor in a similar mode, since the compounds are structural
analogs. In general, the alignments are chosen to span the
common framework of the molecules in the training and test
sets. Alignments using atoms from the right, left, and middle
of the common framework and alignments that use atoms that
span the common framework should be used to ensure a
complete alignment analysis [13]. Three-ordered atom trial
alignments were selected in this study: (1) a-b-c, (2) b-a-c, (3)
c-b-a, and (4) b-c-a, using a common framework (Fig. 1).

Interaction pharmacophore elements

The 4D-QSAR method currently defines seven types of inter-
action pharmacophore elements (IPEs), corresponding to at-
om types that may occupy the grid cells. These IPEs corre-
spond to the interactions that may occur in the active site, and
are related to the pharmacophore groups. In this study, the
following trial set of interaction pharmacophore elements
were selected: i) any type (any); ii) nonpolar (np); iii) polar-
positive charge density (p+); iv) polar-negative charge density
(p-); v) hydrogen bond acceptor (hba); (hbd) hydrogen bond
donor; and vi) aromatic systems (ar) [11]. The use of IPEs
allows each of the compounds in a training set to be
partitioned into sets of structure types and/or classes with
respect to possible interactions with a common receptor. The
occupancy of the grid cells by each IPE type is recorded over
the conformational assembly profile, and forms the set of grid
cell occupancy descriptors (GCOD), to be utilized as the pool
of trial descriptors in the model building and optimization
process.

Grid cell

The conformational ensemble profile for each compound,
obtained after the MDS step, was overlaid onto a cubic lattice
of a selected grid cell size, according to each selected align-
ment. The cubic lattice serves to record the distribution of
spatial occupancy for each atom of each ligand in the training.
The grid cell occupancy measure is defined as the absolute-
occupancy (AO) of a grid cell (x,y,z-coodinate) for a mole-
cule. AO is calculated as the sum of all IPE atoms of the
molecule located in a cell, summed over all conformations
recorded in the MDS. The occupancy measures can be nor-
malized by dividing the sampling values by the number of
sampling steps. The grid cell size defined as 2 Å was used,
which corresponds to the integral number closest to twice the
hydrogen atom van der Waals radii (rvdW = 1.2 Å) and thus, is
large enough to encompass a hydrogen atom.
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Table 1 Structures of the 53 D2R inhibitors and Ki values. Training set compound numbers are in bold and test set compounds numbers are in italic
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Table 1 (continued)
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Conformational selection

In the 4D-QSAR method, the conformation of each com-
pound can be postulated as the lowest-energy conformer
state from the set sampled for each compound, which
predicted the maximum activity using the optimum 4D-
QSAR model [11].

Results and discussion

4D-QSAR model calculations

In order to exclude noise or useless data, databases named
DB1, DB2, DB3, and DB4 were generated. Databases DB1
were constructed excluding the variables where GCODs are
equal to zero for all molecules, and databases DB2-DB4 were
constructed excluding the variables where GCODs have var-
iance cutoff values of up to 0.1, 0.5, and 1.0, respectively. The
GCODs from the data reduction were optimized using a
combined genetic algorithm (GA) and partial least-squares
(PLS) approach [11], implemented in the 4D-QSAR program
[10]. Their optimizations were initiated using 10,000 random-
ly generated models, each having initially six variables.
Mutation probability over the crossover optimization cycle
was set at 100 %. The smoothing factor, the variable that
specifies the number of descriptors in QSAR models, ranged
in order to determine equations with no more than ten terms.
Each alignment was evaluated using the procedure described
above.

Validation is a crucial aspect of any QSARmodeling. High
value of q2 appears to be the necessary but not the sufficient
condition for the model to have a high predictive power. Thus,
the best models, resulting from the 4D-QSAR study, were
based on different criteria [19]:

1) Coefficient of determination (r2): is a measure of how
well the regression line represents the data.

r2 ¼ 1−

X
1

n

YExp − Ycalib

� �2
X
1

n

YExp − Ycalib

� �2 ; ð1Þ

where YExp corresponds to the experimental pKi values,

Ycalib are the calculated pKi values, and Ycalib corre-
sponds to the mean pKi values.

2) Leave-one-out cross-validation (LOOcv) correlation co-
efficient (q2): estimating the performance of a predictive
model.

q2 ¼ r2CV ¼ 1−

X
1

n

YExp−Ycv

� �2
X
1

n

YExp−Ycv

� �2 ; ð2Þ

where Ycv corresponds to the calculated pKi values from

cross validation and Ycv corresponds to the mean pKi
values.

3) Adjusted r2 (r2adj): compares the explanatory power of
regression models that contain different numbers of
predictors. One of the claimed benefits for adjusted R2
is that it “punishes” you for including extraneous and
irrelevant variables in the model.

r2adj ¼ 1−
n−1ð Þ 1−r2ð Þ
n−k−1ð Þ ; ð3Þ

where n is the number of samples and k is the number
of independent variables.

4) Root mean square error of calibration (RMSEC), root
mean square error of cross validation (RMSECV) or root
mean square error of prediction (RMSEP):

RMSEC=RMSECV=RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
1

n

YExp−Ycalib=cv=pred

� �2
n

vuuut
; ð4Þ

where “n-k-1”expression corresponds to model degrees
of freedom.

5) Friedman’s lack-of-fit (LOF): estimates the quality of a
model. Thismeasure penalizes appropriately for the addition
of terms to the equation (and consequent loss of degrees of
freedom) in such a way to resist over-fitting. A “fitness
function” or lack of fit (LOF) is used to estimate the quality
of a model, so that best model receives the best fitness score.

LOF ¼ LSE

1− cþdpð Þ
m

n o2 ; ð5Þ

where LSE is the least-squares error (calculated from the
difference between actual and calculated values for the
activity index over the data set), c is the number of basis
functions in the model, d is the smoothing factor, p is the
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Compound 8

a
b c

Fig. 1 Ordered atom letter codes (a, b, and c) used in the 4D-QSAR
analysis defining the three trial alignments: (1) a-b-c, (2) b-a-c, (3) c-b-a,
and (4) b-c-a
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total number of variables contained in all basis functions,
and m is the number of samples (compounds) in the
training set.

6) Correlation coefficient of external validation set (r2pred):
models are generated based on training set compounds,
and the predictive capacity of the models is judged based
on the r2pred values calculated according to the following
equation:

R2
pred ¼ 1−

X
1

n

YExp testð Þ−Y Pred testð Þ
� �2

X
1

n

YExp testð Þ−Y training

� �2 ; ð6Þ

where Ypred(test) and YExp(test) indicate, respectively, pre-
dicted and experimental activity values of test set com-
pounds and Ytraining indicates the mean activity value of
the training set compounds.

7) r 2m (training): it is a modified r2 and can also be applied for
the test set [20, 21].

r2m trainingð Þ ¼ r2 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r20

q� �
; ð7Þ

where r0
2 represents the squared correlation coeffi-

cient between the observed and predicted values of
the training set compounds when the intercept is set
to 0.

8) rp
2 [22]: penalizes the model r2 for the difference between

the squared mean correlation coefficient of randomized
models and the square correlation coefficient of the non-
randomized model.

r2P ¼ r2 �
ffiffiffiffiffiffiffiffiffiffiffi
r2 ‐ r2r

q
ð8Þ

QSAR models

According to the standard procedure, the compounds of
Table 1 were grouped in a training set consisting of 42
compounds of the total 52 compounds, and a predic-
tion set, which is formed by the remaining ten com-
pounds. From the pool of equations generated by the
4D-QSAR program, the best QSAR equations for each
alignment were selected. These equations were evalu-
ated for their statistical parameters, as well as the
number of outlier compounds to select the best equation for
each DB.

Alignment 1
pIC50 ¼ 8:46 þ 3:93 ‐4; 2; 7; ahbð Þ þ 4:42 ‐2; 1; 9; p‐ð Þ þ 1:50 ‐1; ‐1; 8; p‐ð Þ þ 2:23 ‐1; 2; 6; npð Þ

þ 2:13 0; ‐1; 7; dhbð Þ þ 0:83 1; 1; arð Þ þ 0:44 ‐1; 1; 8; npð Þ

Model 1 n r2 q2 r adj2 RMSEC RMSECV LOF Rm2 Y‐rand Rp2

42 0:81 0:68 0:78 0:18 0:23 0:095 0:65 0:15 0:66

ð9Þ

Alignment 2
pIC50 ¼ 8:51þ 2:92 3; 2; ‐3; ahbð Þ ‐ 0:89 2; ‐1; ‐2; anyð Þ þ 1:43 0; 2; ‐3; npð Þ þ 1:32 1; 1; ‐5; ahbð Þ

þ 1:8246 acp 0; ‐1; ‐3; dhbð Þ þ 1:84 0; 1; ‐4; arð Þ – 0:49 ‐1; 1; ‐5; anyð Þ þ 0:52 1; 1; ‐4; npð Þ

Model 2 n r2 q2 radj
2 RMSEC RMSECV LOF Rm

2 Y−rand Rp
2

42 0:84 0:76 0:81 0:19 0:24 0:098 0:72 0:18 0:66
ð10Þ

Alignment 3
pIC50 ¼ 8:62 þ 2:39 1;−2;−1; dhbð Þ−1:20 −1;−2;−2; ahbð Þ þ 1:54 2;−3;−4; anyð Þ þ 88:20 1; 1;−1; npð Þ

− 86:20 1; 1;−1; anyð Þ þ 0:43 −1;−3;−2; anyð Þ

Model 3 n r2 q2 radj
2 RMSEC RMSECV LOF Rm

2 Y−rand Rp
2

42 0:68 0:61 0:62 0:25 0:28 0:13 0:48 0:11 0:51
ð11Þ
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Alignment 4

pIC50 ¼ 8:59 − 0:57 2;−1; 1; npð Þ þ 3:92 −1;−2; 3; ahbð Þ þ 1:22 −1; 1; 2; anyð Þ −0:78 −2;−2; 2; npð Þ
− 1:13 −1;−3; 4; npð Þ − 2:44 −4; 0; 4; npð Þ þ 2:59 −4; 0; 4; anyð Þ þ 1:54 −1;−2; 4; npð Þ
− 0:28 −1; 0;−2; anyð Þ

Model 4 n r2 q2 radj
2 RMSEC RMSECV LOF Rm

2 Y−rand Rp
2

42 0:79 0:69 0:75 0:19 0:25 0:14 0:67 0:18 0:62
ð12Þ

As model 2 showed higher r2, q2, Rm
2, and Rp

2

values, it was then selected as the best alignment in
this 4D-QSAR study. An r-square value greater than 0.7
indicates that the model is correlated and may be used
to calculate the activity of the test set [23]. The mod-
ified r2 (r2m) value calculated was equal to 0.70. Values
over 0.5 are acceptable. The statistical significance of
the relationship between the biological response and the
chemical structure descriptors was also further demon-
strated by a cross-validation analysis. LOO-CV(training)

analysis of Model 2 had a q2 value of 0.76, with a
standard error of 0.19. LOO-CV values over 0.5 reveal
that the model is a useful tool for predicting affinities
for new compounds in this set. The optimum number of
latent variables (PLS components) used for further anal-
yses was seven. A robustness test, based on randomiza-
tion, was performed and a value of 0.18 was obtained.
The r2P value found in this study was 0.66 (>0.5).

The calculated pKi values for the training set were
computed using model 2. The residual values were
calculated and are shown in Table 2. The standard
deviation (SD) of the residual values is 0.13. To estab-
lish outlier compounds, the residuals which are more
than twice the SD of the residual of fit were observed.
Analyses of the data showed that model 2 has no
outliers.

In order to better understand the behavior of the data fitted
to the models, the cross-correlation matrix among the different
GCODs inmodel 2 was calculated. There is no correlation (r>
0.7) between pairs of GCODs.

A graphic representation of the 3D-pharmacophore
embedded in the 4D-QSAR model 3 is shown in
Fig. 2. Each descriptor (GCOD) is labeled as
“x,y,z,IPE” which represent the cartesian coordinates
position of the selected grid cell (x,y,z) and the respec-
tive atom type (IPE). They represent the possible inter-
molecular interactions that may occur between the li-
gand and the receptor. The GCODs (3,2,−3,ahb),
(0,2,−3,np), (1,1,−5,ahb), (0,−1,−3,dhb), (0,1,−4,ar),
and (1,1,−4,np) exhibited positive regression coefficients

correspond to favorable interactions between the mole-
cules that have this descriptor and the amino acid res-
idues in the receptor active site. Therefore, the activity
of the inhibitors should increase with increasing ligand
atom occupancy. The GCODs (2,−1,−2,any) and
(−1,1,−5,any) exhibited negative coefficients which cor-
respond to unfavorable interactions between the substit-
uent and the amino acid residues in the receptor active
site. Therefore, substituents in these positions decrease
the potency.

The most important GCOD should be (3,2,−3,ahb)
since it is most frequently selected by the GA analysis.
It is located close to the oxygen atom of the
quinolinone ring and represents an acceptor hydrogen
bond IPE and shows the highest frequency of occupa-
t ion for compound 8 (Ki = 0.1nM). GCODs
(1,1,−5,ahb) and (0,−1,−3,dhb) are also located close
to oxygen and nitrogen atoms, respectively, of the
quinolinone ring. These three descriptors suggest an
acceptor/donor hydrogen bond region in the receptor
close to this ring.

GCOD (2,−1,−2,any) is present as a non-specific IPE,
with a negative regression coefficient. It shows the
highest frequency of occupation for compound 9 (Ki =
2.4 nM). On the other hand, GCOD (0,2,−3,np) repre-
sents a non-polar IPE, positive regression coefficient
and the highest frequency of occupation for compound
11 (Ki = 0.2 nM). Compounds 9 and 11 are isomers and
the location spatial of quinolinone ring in the E isomer
suggests that the occupation of this region is detrimental
to the potency.

GCOD (−1,1,−5,any) is located near the methyl group and
represents a non-specific IPE. Since the coefficient of this
GCOD is negative, substituents such as compound 35 are
detrimental to the activity.

GCOD (0,1,−4,ar) corresponds to an aromatic IPE. This
grid cell suggests a hydrophobic region in the receptor close to
this ring. Since the coefficient of this grid cell is positive,
potential inhibitors would benefit from the exploitation of this
region with other types of aromatic groups.
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External validation

Therefore, calibration parameters were used to predict the
bioactivities of ten test set compounds (4, 10, 11, 16, 23, 31,

38, 41, 44, and 51), since they were not included in the
development of the 4DQSAR models. The observed and
predicted pKi values and the residues of the fit for the test
set are shown in Table 3. A high correlation (r2pred = 0.87)
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Fig. 2 Graphical representation of descriptors obtained of model 2. Light
spheres indicate activity-enhancing pharmacophore sites and dark
spheres indicate activity-decreasing pharmacophore sites

Table 2 Experimental and predicted pKi values and residual values for
the training set using Model 2

Training set Experimental pKi Predicted pKi Residual

1 9.699 9.653 −0.046
2 9.301 9.278 −0.023
3 9.301 9.235 −0.066
5 9.097 9.113 0.016

6 9.301 9.213 −0.088
7 9.398 9.583 0.185

8 10.000 9.835 −0.165
9 7.886 7.938 0.052

12 9.155 9.385 0.230

13 8.658 8.628 −0.030
14 8.585 8.618 0.033

15 8.921 8.812 −0.109
17 8.398 8.531 0.133

18 9.155 9.098 −0.057
19 8.301 8.510 0.209

20 8.456 8.569 0.113

21 8.310 8.545 0.235

22 8.921 8.865 −0.056
24 8.824 8.846 0.022

25 8.959 9.069 0.110

26 8.921 8.710 −0.211
27 8.796 8.730 −0.066
28 9.000 8.896 −0.104
29 8.721 8.961 0.239

30 8.921 8.822 −0.099
32 8.319 8.543 0.214

33 8.721 8.451 −0.270
34 8.398 8.531 0.133

35 8.328 8.336 0.008

36 8.824 8.876 0.052

37 9.097 9.097 −0.000
39 8.699 8.690 −0.009
40 8.347 8.618 0.271

42 8.456 8.638 0.182

43 8.482 8.545 0.064

45 9.699 9.504 −0.195
46 8.638 8.693 0.055

47 8.553 8.503 −0.050
48 8.585 8.598 0.013

49 8.569 8.338 −0.231
50 8.638 8.822 0.184

52 9.097 8.827 −0.270

Table 3 Experimental and predicted pKi values and residual values for
the test set using model 2

Test set Experimental pKi Predicted pKi Residual

4 9.222 8.845 −0.377
10 8.495 8.461 −0.034
11 9.700 9.719 0.019

16 8.824 8.744 −0.080
23 9.155 8.864 −0.291
31 8.921 8.879 −0.042
38 8.620 8.510 −0.110
41 8.328 8.336 0.008

44 8.886 8.958 0.072

51 8.796 8.813 0.018
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between experimental and predicted values was found, show-
ing the satisfactory predictive potency of the 4D-QSAR
model.

It is interesting to see how well the experimentally ob-
served activity agrees with the predicted one. Considering
only the test set compounds, the r2 and standard deviation
(SD) of the residuals computed by Eq. 2 were equal to 0.87
and 0.11, respectively.

Compounds based on model 2 analysis

In medicinal chemistry, the optimization of lead compounds
proceeds along two main methods: based on chemical modi-
fications of the molecular structure or the application of con-
formational constraints that change the molecular flexibility.
Based on the results obtained in this study, modifications to
the structure of compound 8 (quinolinone ring) are suggested.
A search in the PubChem Database [24, 25] was carried out
and three compounds were selected. The idea is to increase the
frequencies of occupation of descriptors with positive regres-
sion coefficients. The bioactivity of the proposed compounds
was predicted using the model 2 equation. The structure of the
three compounds and their predicted pKi values are shown in
Fig. 3. These results were comparable to the best experimental
candidate, compound 8. Compound B has shown the highest
calculated pKi, corroborating the idea that donors/acceptors
hydrogen bond substituents in the ring increase the potency of
D2R inhibitors.

Conclusions

In the present study, 4D-QSAR models for D2R inhibitors
were built and evaluated, based on a series of benzothiophene

analogs. The best models were obtained from alignments 1–4,
using a grid cell size of 1.0 Å, from a training set of 42
compounds. The best model showed r2, q2, Rm

2, and Rp
2

values equal to 0.84, 0.76, 0.72, and 0.66, respectively,
confirming the acceptability of a predictive QSAR model; in
other words, model 2 can be considered robust. In addition, a
test set of ten compounds was used in the external validation
and a r2pred value equal to 0.87 was found. Based on these
results, the activity of three compounds that were not included
in the development of the 4DQSAR models was predicted,
based on the model 2 equation. Compound B showed greater
inhibitory potency than compound 8, the most active of the
series of benzothiophene inhibitors studied.
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